FGV
Auditor de Controle
CGE-PB
2024

Audit data analytics, machine learning, and full population testing

Technologies are evolving at an unprecedented pace and pose significant challenges and opportunities to companies and related parties, including the accounting profession. In today’s business environment, it is inevitable for companies to react quickly to changing conditions and markets. Many companies are seeking better ways to utilize emerging technologies to transform how they conduct business. We live in an age of information explosion, with technologies capable of making revolutionary changes in various industries and reshaping business models. At present, many companies view data as one of their most valuable assets. They amass an unprecedented amount of data from their daily business operation and strive to harness the power of data through analytics. Emerging technologies like robotic process automation, machine learning, and data analytics also impact the accounting profession. It is important for the profession to understand the impacts, opportunities, and challenges of these technologies.

Specifically, in audit and assurance areas, data analytics and machine learning will lead to many changes in the foreseeable future. Audit sampling is one such potential change. The use of sampling in audits has been criticized since it only provides a small snapshot of the entire population. To address this major issue, this study introduces the idea of applying audit data analytics and machine learning for full population testing through the concept of “audit-by-exception” and “exceptional exceptions.” In this way, the emphasis of audit work shifts from “transaction examination” to “exception examination” and prioritizes the exceptions based on different criteria.

Consequently, auditors can assess the associated risk based on the entire population of the transactions and thus enhance the effectiveness and efficiency of the audit process.

Adapted from the introduction to a study published in: https://www.sciencedirect.com/science/article/pii/S240591882200006X

In the sentence “Emerging technologies like robotic process automation”, “like” expresses:

Comentário longo

In the sentence “Emerging technologies like robotic process automation”, “like” expresses:

appreciation – Apreciação

informality – informalidade

preference – preferência

possibility – possibilidade

similarity – similaridade

Como vimos, o “like” dá a denotação de similaridade à frase. Nada de novo sob o sol pra quem sabe o que procurar.

Vejo apenas uma tentativa de indução ao erro na primeira opção “apreciação” já que o like sozinho é usado como “gosto/gosta”.

Quais as expressões que expressam similaridade?

Similar to

Exemplo: "His situation is similar to mine."

Tradução: "A situação dele é semelhante à minha."

Alike

Exemplo: "The twins look alike."

Tradução: "Os gêmeos são parecidos."

As...as

Exemplo: "He is as tall as his brother."

Tradução: "Ele é tão alto quanto o irmão."

In the same way

Exemplo: "She reacted in the same way as I did."

Tradução: "Ela reagiu da mesma forma que eu."

Just like

Exemplo: "He dances just like his father."

Tradução: "Ele dança exatamente como o pai."

Comparable to

Exemplo: "Her skills are comparable to those of an expert."

Tradução: "As habilidades dela são comparáveis às de um especialista."

Essas expressões são úteis para comparar pessoas, objetos, situações ou ações, destacando suas semelhanças.

Deixe um comentário

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *

Esse site utiliza o Akismet para reduzir spam. Aprenda como seus dados de comentários são processados.

Compartilhar esta questão:

Faça sua pré-matrícula:

plugins premium WordPress